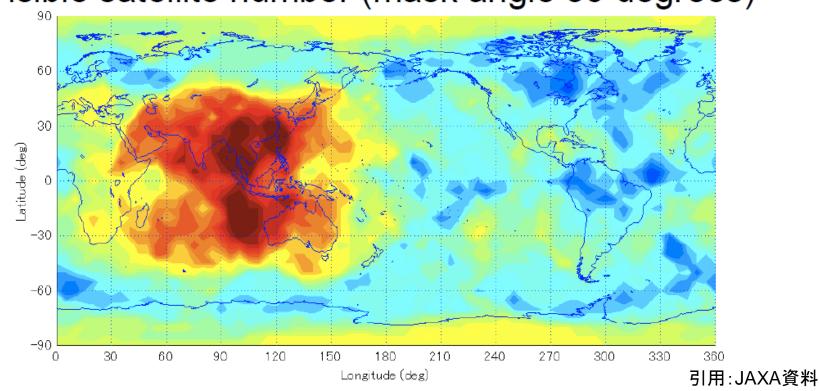


GLONASS, Galileo, BeiDouの信号捕捉と追尾

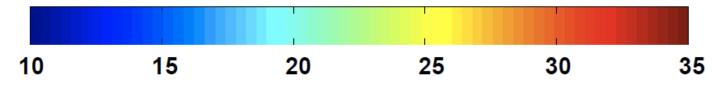
東京海洋大学 日本学術振興会特別研究員 (PD) 鈴木 太郎 tsuzuk0@kaiyodai.ac.jp

目次


- 1. マルチGNSSの現状
- 2. ソフトウェア受信機
- 3. GLONASS
- 4. Galileo
- 5. BeiDou
- 6. QZSS

補足資料1 各衛星信号の詳細 補足資料2 各ナビゲーションデータの詳細 補足資料3 BOC変調信号のトラッキング 補足資料4 RTKPLOTによる可視衛星予測 補足資料5 セミナー用ソースコード 補足資料6 参考HP・文献

マルチGNSSの現状(1)

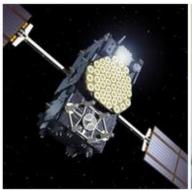


Visible satellite number (mask angle 30 degrees)

2020:

GPS(27)+Glonass(24)+Galileo(30)+COMPASS(35)+IRNSS(7)+QZSS(3)+SBAS(7)

利用可能な衛星の爆発的な増加


衛星測位の利用性・精度の向上

マルチGNSSの現状(2)

GPS (米国)

GLONASS (ロシア)

Galileo (EU)

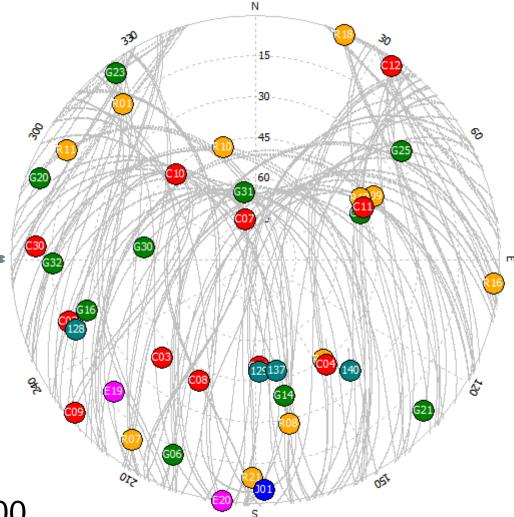
BeiDou (中国)

(日本) http://igg.org/mgov

引用:http://igs.org/mgex/

QZSS

- 測量用GNSS受信機だけでなく低価格帯受信機にもマルチ GNSS化の流れ
 - U-blox 7 GPS, GLONASS+QZSS+SBAS+Galileo+BeiDou
- 中国は自国でBeiDouの使用を義務化
- 受信機, アンテナの価格もだんだんと下がりつつある



マルチGNSSの現状(3)

RTKPLOTでのマルチGNSS可視衛星予測(補足資料4)

- GPS
- O GLONASS
- Galileo
- BeiDou
- QZSS
- SBAS

2013/1/30 13:00

Nsat=40, GPS:11, GLO:11, GAL:2, QZS:1, CMP:11, SBS:4

マルチGNSSの現状(4)

	L1				L2		L5				
中心周 波数	1575.42			1561. 098	1602+	1227. 60	1246+	1176.45		1207.14	
衛星	GPS QZS	GPS QZS	Galile o	BeiDo u	GLON ASS	GPS QZS	GLON ASS	GPS QZS	Galile o	Galile o	BeiDou
信 号	L1CA	L1C	E1	B1	G1	L2C	G2	L5	E5a	E5b	B2
変調 方式	BPSK	вос	вос	QPSK	BPSK	BPSK	BPSK	BPSK	BPSK (AltB OC)	BPSK (AltB OC)	QPSK
衛星数	28	1	4	14	24	12	24	4	4	4	14
(2013)	32			14	24	12	24	8		18	
衛星数 (2020)	31	31	30	35	24	31	24	31	30	30	35
	61			35	24	31	24	61		65	

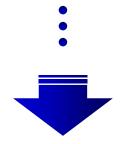
相互運用をしている信号は既存のH/Wで容易に利用可能

ソフトウェア受信機とは?

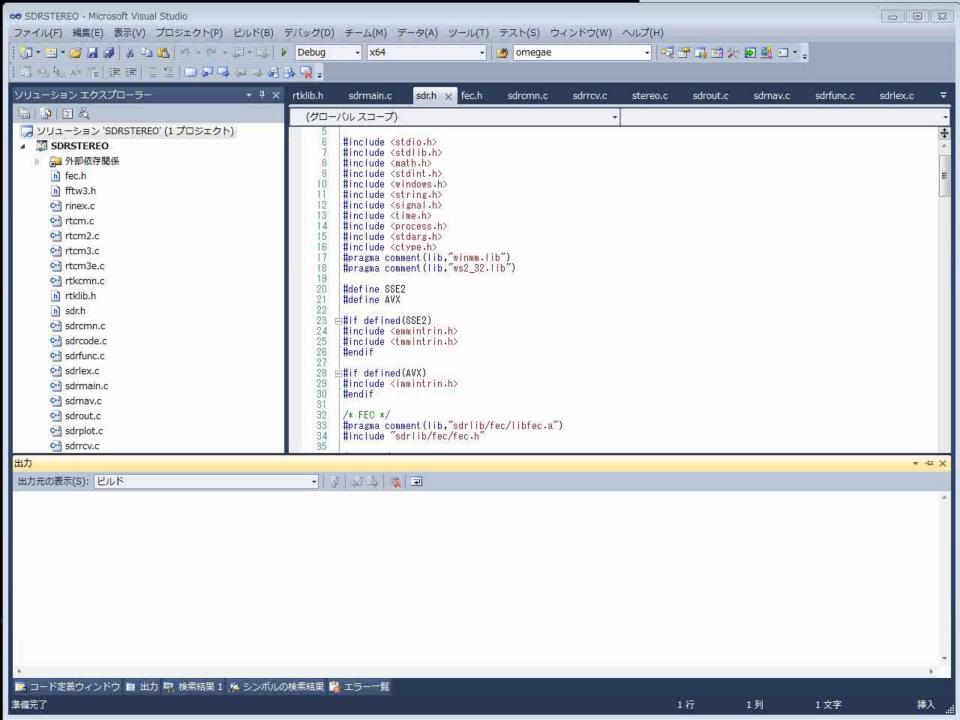
- ここ10年ほどで大学などの研究機関でもソフトウェア受信機に よるGNSSの研究・開発というコンセプトが一般化
- フロントエンド、ソフトウェアなども既に市販化されている
 - 現在は2-3周波のものまで販売
- ここ数年ソフトウェアGPS/GNSSを利用した大学関係者の研究 発表/論文が増加
 - IONGNSS2012では全292件の発表中102件の発表が何ら かの形でソフトウェアGNSSを利用

ソフトウェア受信機のメリット

- 新しい衛星システム, 測位信号への対応や評価などが容易
- 信号捕捉や追尾、マルチパスの解析などの研究用途に非常に有用



マルチバンド・マルチGNSSソフトウエア受信機の開発


ソフトウェア受信機で何ができるか?

- 新しい衛星, 新しい信号の評価
- マルチパスの解析
- コリレータの研究
- ・ 信号の捕捉, 追尾手法の開発
- 高感度受信機の研究
- LEXやL1SAIFなどのデコーダー
- Ultra-Tightly Coupled GNSS/INS

GNSSの研究を行うには今後必要な技術!

マルチGNSS対応フロントエンド(1)

SiGe GN3S Sampler v3

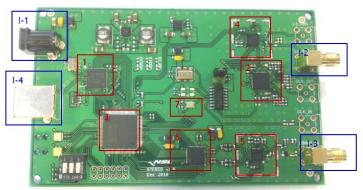
https://www.sparkfun.com/products/10981

- •L1のみ
- •SparkFunで\$450

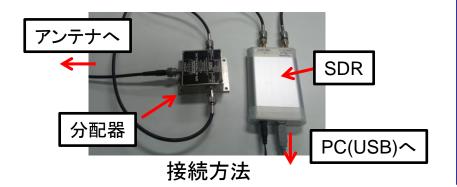
CRS: Dual-Frequency GPS Front End DC2 http://www.cfrsi.com/products/gpssystemrf.html

- •L1+L2
- ・10MHzサンプリング
- •価格?

SX-NSR SCIENTIFIC NAVIGATION RECEIVER


http://www.ifen.com/

- •L1+L2+L5
- •USB3.0
- •価格?


マルチGNSS対応フロントエンド(2)

NSL Inc. Stereo V1

- 3. Xilinx Spartan-3A (FPGA)
- 4. MAXIM/ MAX2769 (RF front-end)
 - → L1バンドGPS用(1550 1610MHz)
- 5. MAXIM/ MAX2112 (RF front-end)
 - → Lバンド(925 2175MHz)
- 6. MAXIM/ MAX19505 (ADC)
- 7. 26MHz VCTCXO

- 2つのフロントエンド(MAX2769,MAX2761)によるIFデータを同時に取得可能(ex. L1(2769)とL5(2112), G1(2769)とG2(2112))
- •フロントエンドの設定は自由に変更可能
- サンプリング周期は26MHz固定(ただし stereo v2ではサンプリング周期変更可)

- USBでIFデータ取得
- フロントエンドの設定を自由に変更可能
- 価格800ユーロ

マルチGNSS対応アンテナ

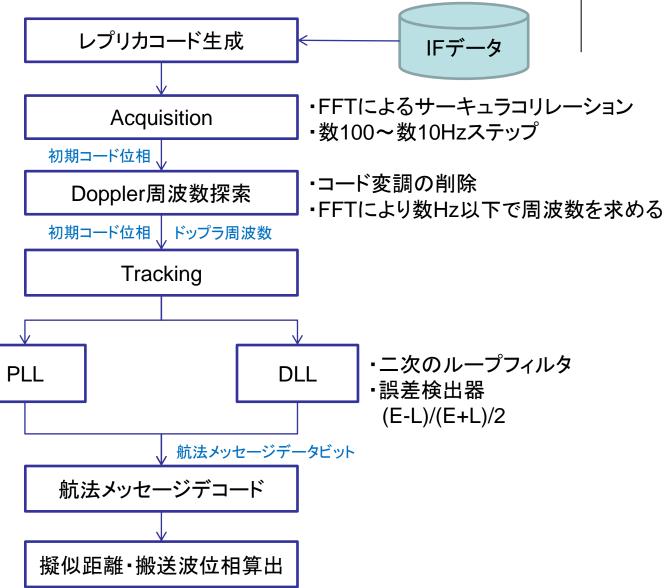
Novatel GPS-703-GGG •L1+L2+L5

JAVAD GrAnt-G3T
•L1+L2+L5+BeiDou

Antcom 52GNSSA
-L1+L2+L5+BeiDou+LEX

Trimble Zephyr Model 2
-L1+L2+L5+BeiDou+LEX

信号捕捉・追尾の戦略(1)



・二次のループフィルタ

•誤差検出器

atan(Qp/lp)

RINEX出力

信号捕捉・追尾の戦略(2)

L1帯の信号(G1, E1, B1)

- L1CAと同様に信号捕捉,追尾を行う
- 異なるのはそれぞれの信号の形式
 - チップレート, チップ数
 - 変調方式
- ナビゲーションデータのデコードは新たに構築
 - ナビゲーションデータのデコードは必須

コードが生成ができれば捕捉・追尾はL1CAとほぼ同様

信号捕捉・追尾の戦略(3)

L1帯の以外の信号(G2, E5ab, L2C, L5, LEX•••)

- L1帯の信号を同時にトラッキングすることにより別の 周波数のコード位相、ドップラ周波数を推定
 - D2=F2/F1*D1
- ナビゲーションデータのデコードは必須ではない
 - ただし擬似距離算出にあると便利
 - Galileoなどは、L1、L5を複合してデコードすることでビットレートが2倍に

L1と複合することで容易にトラッキング可能

GLONASS

GLONASS信号概要

GNSS	GLONASS					
Service Name	C/A (G1)	C/A (G2)				
Center Freq.	1602+ 0.5625K MHz	1246+ 0.4375K MHz				
Signal Component	Data	Data				
I/Q	I	1				
Band Width	1.002 MHz	1.022 MHz				
Modulation	BPSK	BPSK				
Code Freq.	0.511 MHz	0.511 MHz				
Code Chips	511	511				
Code Length	1ms	1ms				
Nav. Data	NAV	NAV				
Min. Received Power	-161.0 dBW	-167.0 dBW				

- FDMA(Frequency-division multiple access)方式
- コードチップレート, チップ数はL1CAの半分

G1(GLONASS)の捕捉と追尾

■ <u>FDMA方式</u>

- 単純にドップラ探索の周波数に、PRNごとのオフセットを加えるだけでOK
- 信号生成, 捕捉, 追尾は特に大きな変更は必要なし
 - コードチップレートもチップ数もC/Aの半分なので計算が楽

■ <u>NAVのデコード</u>

- エンコードされていないため、メッセージ構造の差以外は L1CAと同様の手順で問題なし
- ■コード生成
 - 全ての衛星に対して1つのコードを作成すればOK
- G1, G2の違い
 - FDAMによる周波数のみ、同じでOK

G1/G2コード生成

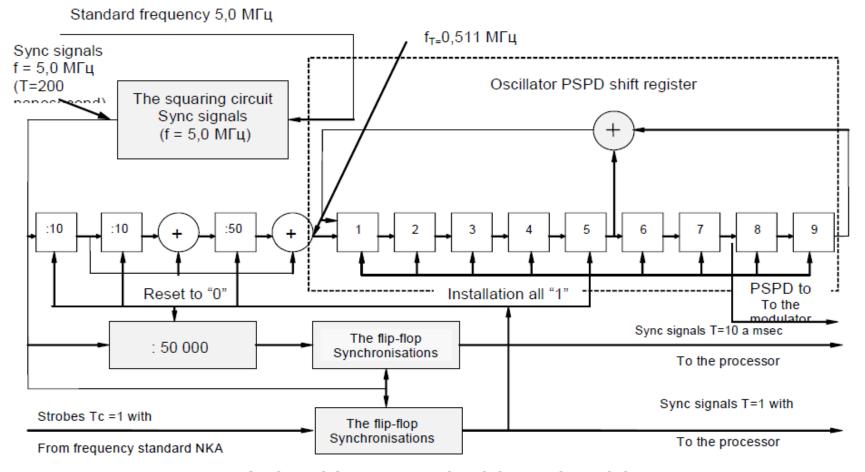
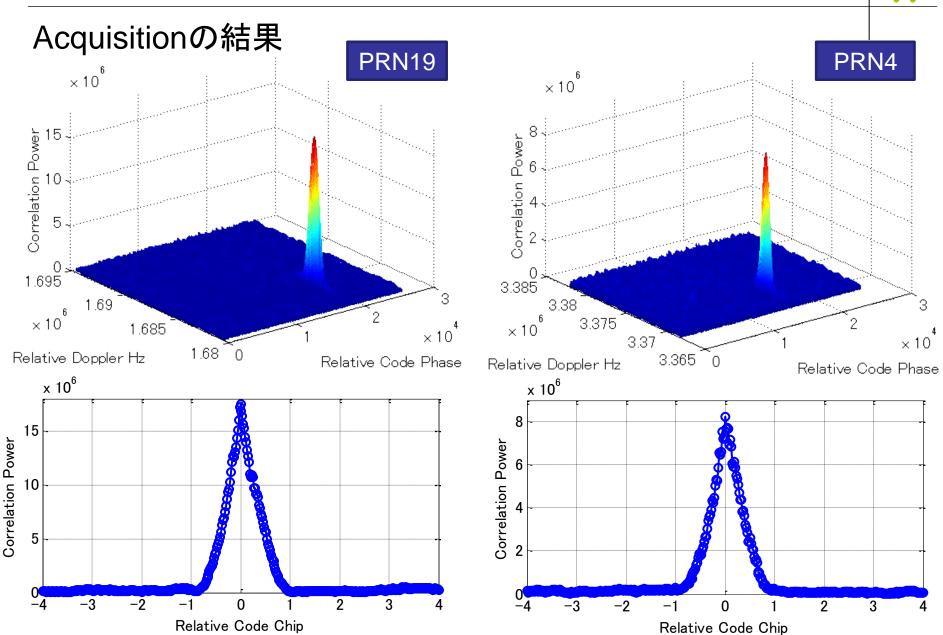
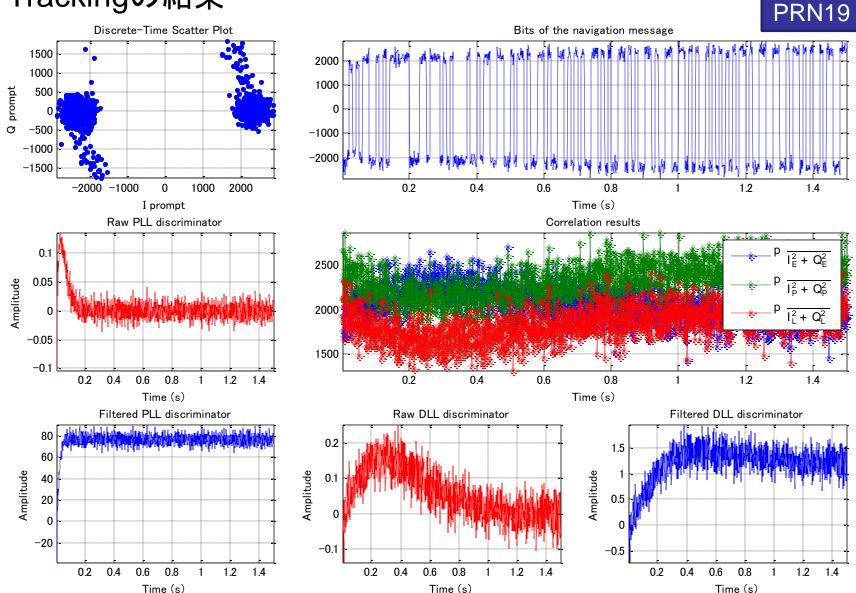



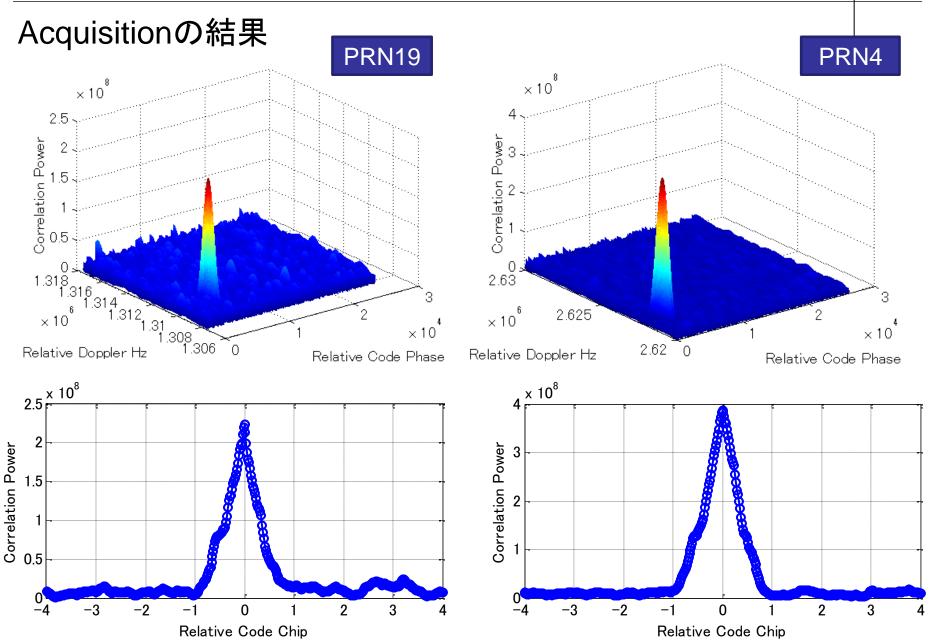
Figure 3.3 GLONASS INTERFACE CONTROL DOCUMENT

- 511ビットのM系列符号
- 非常にシンプル

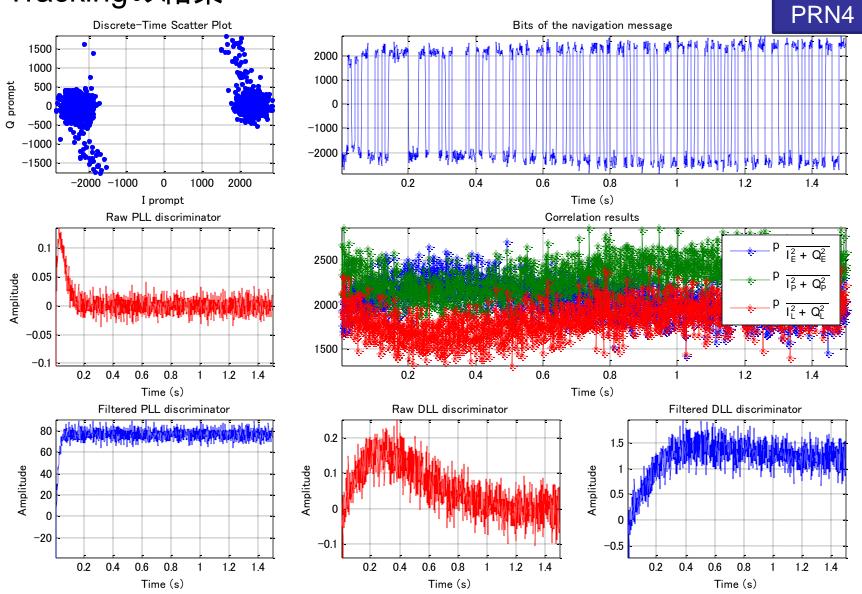
G1(GLONASS)の捕捉



G1(GLONASS)の追尾



G2(GLONASS)の捕捉



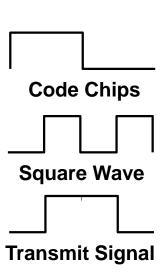
G2(GLONASS)の追尾

GLONASSまとめ

- ■FDMA(Frequency-division multiple access) 方式
- ■コードは全ての衛星で共通
- ■G1, G2共にGPS L1CAからの大きな変更は必要ない
- ■計算が負荷が少ない

Galileo

Galileo信号概要


	GALILEO							
Service Name	E	1	E	5a	E5b			
Center Freq.	1575.4	12MHz	1176.4	45MHz	1207.14MHz			
Signal Component	E1B Data	E1C Pilot	E5al Data	E5aQ Pilot	E5bl Data	E5bQ Pilot		
I/Q	Í	Q	I	Q	ĺ	Q		
Band Width	24.552 MHz		20.46 MHz		20.46 MHz			
Modulation	CBOC(6,1,1/11)		BPSK(10)		BPSK(10)			
Code Freq.	1.023 MHz		10.23 MHz		10.23 MHz			
Code Chips	4092		102	230	10230			
Code Length	4ms	4(100)ms	1(20)ms	1(100)ms	1(4)ms	1(100)ms		
Nav. Data	I/NAV	-	F/NAV	-	I/NAV	-		
Min. Received Power	-163.0 dBW	-158.25 dBW	-155.0 dBW	-155.0 dBW	-155.0 dBW	-155.0 dBW		

- BOC (Binary Offset Carrier)変調への対応が必要
- I/NAV, F/NAVのデコードへの対応が必要

E1B/C(GALILEO)の捕捉と追尾

- 現在衛星数は4機
- <u>BOC変調(補足資料3)</u>
 - CBOC (6,1,1/11)をBOC(1,1)で代用
 - BOC(1,1)でほぼ問題なし
 - コード長とコード周波数が2倍に (4092→8184,1.023→2.046MHz)
- <u>I/NAV, F/NAVのデコード</u>
 - ½畳込み+インターリーブ, Viterbiデコーダ
- **■** E1コード
 - データ信号(E1B), パイロット信号(E1C)
 - L1CA信号に対してコード長が4倍(4ms)

E1B/Cコード生成

■ Galileo ICDより

The E1-B and E1-C primary codes are pseudo-random memory code sequences according to the hexadecimal representation provided in Annex C.

■ HEX表記でICDに記載

E1B Code No 1

F5D710130573541B9DBD4FD9E9B20A0D59D144C54BC7935539D2E75810FB51E494093A0A19DD7
9C70C5A98E5657AA578097777E86BCC4651CC72F2F974DC766E07AEA3D0B557EF42FF57E6A58E
805358CE9257669133B18F80FDBDFB38C5524C7FB1DE079842482990DF58F72321D9201F8979E
AB159B2679C9E95AA6D53456C0DF75C2B4316D1E2309216882854253A1FA60CA2C94ECE013E2A
8C943341E7D9E5A8464B3AD407E0AE465C3E3DD1BE60A8C3D50F831536401E776BE02A6042FC4
A27AF653F0CFC4D4D013F115310788D68CAEAD3ECCCC5330587EB3C22A1459FC8E6FCCE9CDE84
9A5205E70C6D66D125814D698DD0EEBFEAE52CC65C5C84EEDF207379000E169D318426516AC5D
1C31F2E18A65E07AE6E33FDD724B13098B3A444688389EFBBB5EEAB588742BB083B679D42FB26
FF77919EAB21DE0389D9997498F967AE05AF0F4C7E177416E18C4D5E6987ED3590690AD127D87
2F14A8F4903A12329732A9768F82F295BEE391879293E3A97D51435A7F03ED7FBE275F102A832
02DC3DE94AF4C712E9D006D182693E9632933E6EB773880CF147B922E74539E4582F79E39723B
4C80E42EDCE4C08A8D02221BAE6D17734817D5B531C0D3C1AE723911F3FFF6AAC02E97FEA69E3
76AF4761E6451CA61FDB2F9187642EFCD63A09AAB680770C1593EEDD4FF4293BFFD6DD2C3367E
85B14A654C834B6699421A

メモリ or ファイルに保存して利用

I/NAVのデコード

- I/NAVのデコード
 - ½畳込み+インターリーブ
 - オーバレイコード(セカンダリコード)を利用

L1C, CNAV2の航法メッセージ構造

Constrain length = 7 G1 1111001 171(OCTAL) G2 1011011 133(OCTAL)

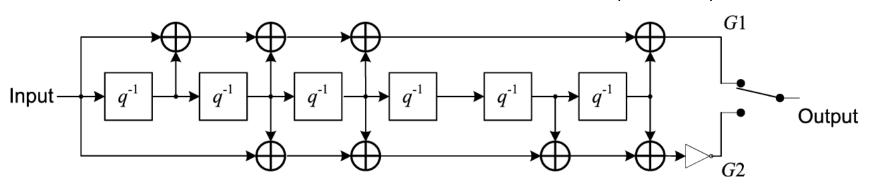
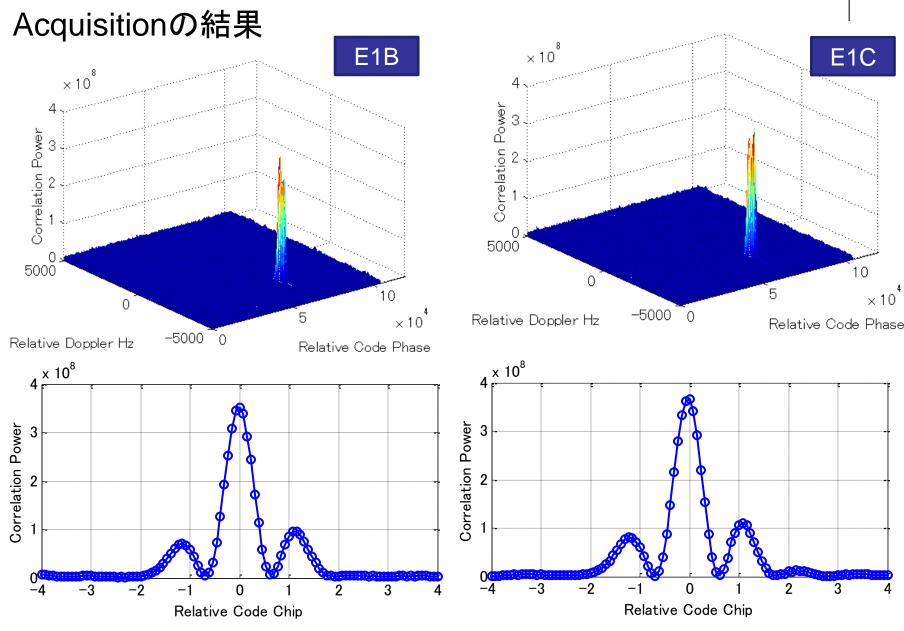
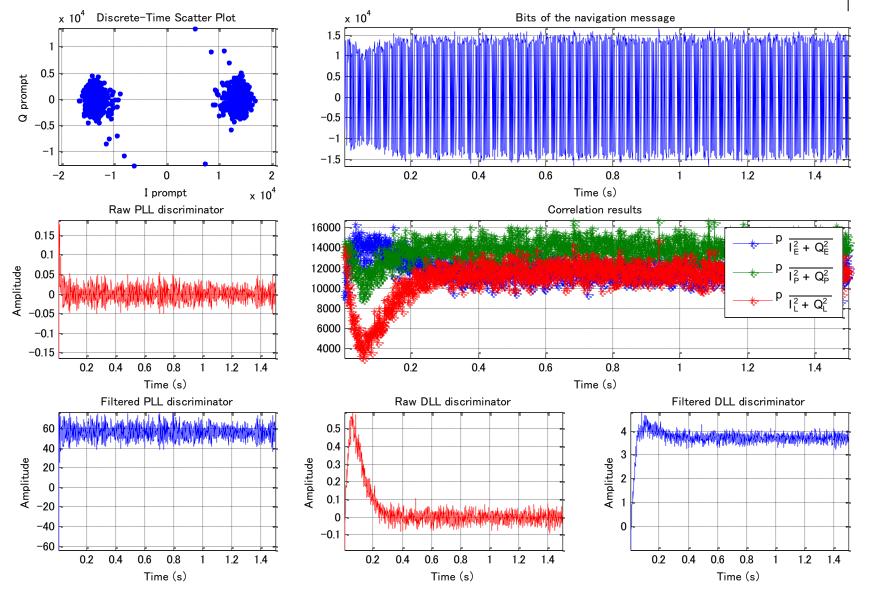



Figure 13. Convolutional Coding Scheme

■ FECの構成はGPSL2C, L5と同様

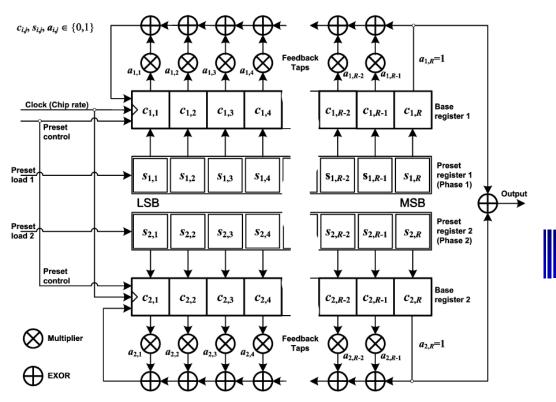
E1B/C(GALILEO)の捕捉



E1B/C(GALILEO)の追尾

Trackingの結果

E5abl/Q(GALILEO)の捕捉と追尾



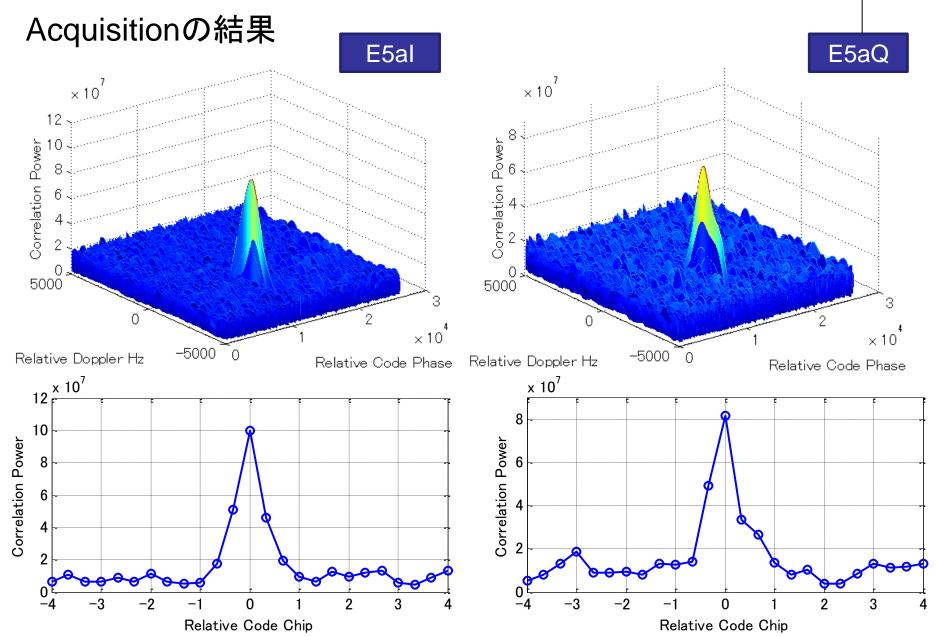
- **■BPSK変調**
 - GPS L5と同じ!
- ■I/NAV, F/NAVのデコード
 - ½畳込み+インターリーブ, Viterbiデコーダ
 - I/NAVはE1Bと同じ
- **■** E5コード
 - 10230チップ, 1ms
 - GPS L5と同じ!
- ■コード生成のみすればGPS L5と全く同じ

E5abl/Qコード生成

C.3. Primary Codes for the E5a-I Component

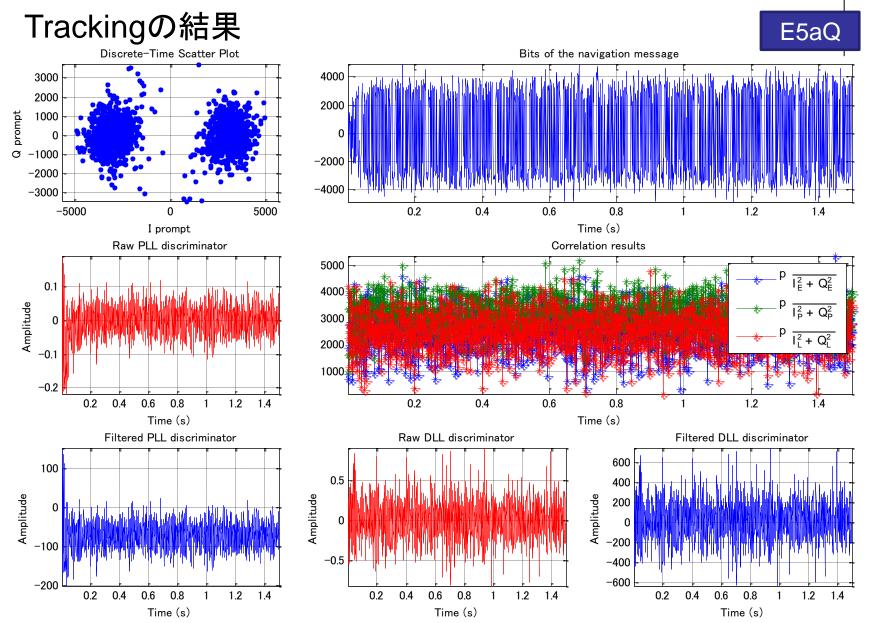
- 線形帰還シフトレジスタ
- HEXコードでも記載されているが 10230チップなのでE1の2.5倍

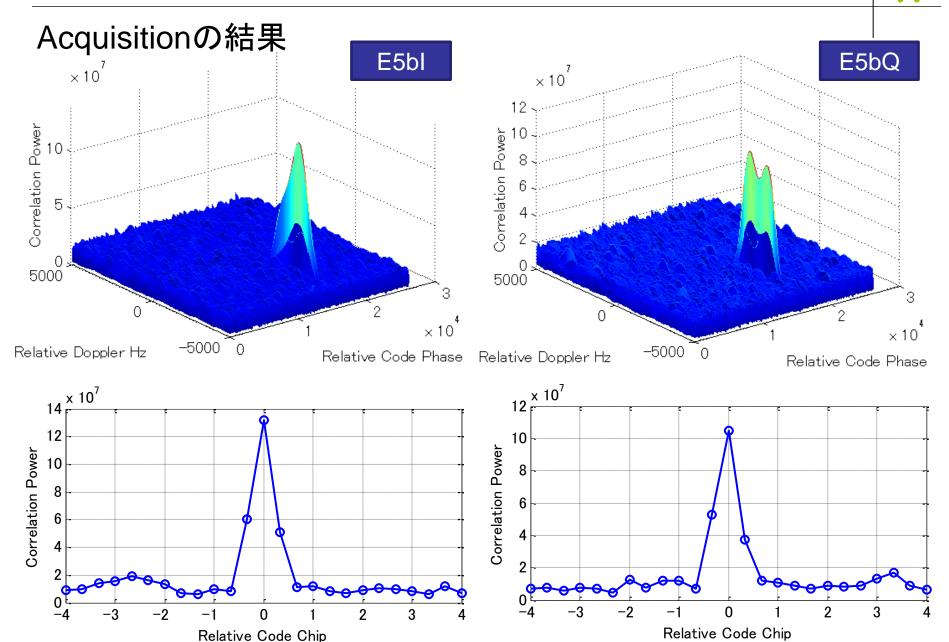
E5aI Code No 1


3CEA9DA7B07B13A6CC0AE53DAD1EE2A0FCC70009338C08AC0EE457F76A1690815C3C940AB722 87CC8F3D1F4C428828E7FD2A21230E42A3BBDF1E792165F644D0E0335F95EBDC93D6005CC0C68 ODB7B0E1B8C4946B7974319F9816141DB9E01011E4F20DA8F1B8E15A6F618CF599C3F5C1A1B2 6D51318ED4119BCE0ACD0332F3DD8F88EC5215AB311C51FF4987DA93B09A43BA84CF08032F6CI 28F43043C54586811D870AD6FA27AA63785345C8BCDD3DA26A0134738BC7E08461D5409FF0B79 1D8574CE797FC5EF7821055028CB4AF92AE1088F8806CD55F0E5FDFCD8D74ED801B2B44AD5D79 D1924D41DDC6AB2070B5360CB64CCF487FE517420348CC39BF50BDF78BE7DA91542FEAB68945 B3EE69E43C75FADC3O3F31O32FD96B7DC7OA88C3B7BAC7322B285D9CFB3A93AC8B89O165F238 8FAD8477DBDD3D0AA4CB3CD73A48000B6D134DA2DA70B56E590A101AEE78864DA0C64A7BCC6B 7CD6F31E9AFF10CA4D47630752D253944632DF6EC60AECDCD223F29399CDA3B74D1DFA547127 EE6C814464A8C55D3C0B83B36B6AC9FA90CE876ACDF65E3EA3FD61D309EB71ED29A3D510B2F4 OB6D6C5B57EC9O6OCFBE48389DCB17CBB2284E7F578565B915O3B06F49CF3E8534870AE 07265A9A1E6E2E5E6DF6DAA367239A96EF5B02C19A4543D537EB4D9D73966C09E9B52B4706F5 B3E0987885EB84DEA26F7823D895F62015188ED38C04CC6714F797FDB0BC713E3D02 8E3872A167BF1BF9791AEE8BB73CF527C50975B55C4E5C2F2E95B677F833ECC878D1764839608 CC1108A75EE9E58FFCFE4CB52884E7AF15EE0632E0729DA1CF5B7A227028CFE1E08F 43D52DD27BED33DE0EE75DC031B4864CF192DFEAF64F726D73321363A233F81C5723243 5A4C44F4320847A9C143F378F204185D2B571482FE45D6BCA152E6EA7223BFC6DCE06 114623EAB9B1EC789B2O51B4AB711DABF5B16FCD970F437B886O313B4F1F14D384EE3976B7E5 D2FDCB7E1BD9BE18B722E37C853ADC7E1CC287OAO2881F95B78487780E1D1C29641510 63D0782A9F451CBEB3E8B919917AEDBCA8A8E563AD3784639793E0F25CC9CC62240FA04B2F14 E71BF5C84EAC56431159556B8BCE077A51469A87737D3D6F06D97DD479FCC35129F4499 8BDCEA9D4941B3756CDE1997C3AFCAE62B6D9E23341E11CD05A7FFF52F5814011A84D73 109006BEF5F19E3C6A9C7521B44741A8282755A8F0DC2FA0E1F6CA4FB34D8CD5FAA27E 8725B9634376137C1BBC46934F83958112D03082DDD6148F353BD1DD24B9F8FD7AD89C40DADA 2A8DBE3608038CD56FFC4ACA35241D76FAC4CAE1211AAD9D73D51C81C59BCE 2C670F8F533A950EF24B00EFE6A3F1354694ABCC6FD9EC4E74DDE1F287AD4F847A F029EFCDDDB19932D906B9CEDFCBE0D422CEE305DD05E407340F28EEEA866664D60AF D6D5C0000B05F79463DB513ED488DE7BD4EC9EACFEF973B23CE4E9539EFCB797456CF5FD1EC54 FDCEE80B39063C48B91A5C2D2BEBC81B9B46D0AD6503BE5AACED2BA5EBE81F630B4E075 8229F7FC5EA532B8729CDB819E066A15379AC6942CD4BC5E97C6791E098105C323A3A3DA3880I 5EE5562ABBA2BDC9906F4486B51ACF8AA4405E9D7A63DB9E3058782DD9AF3995FFB3D34AEF98 34A0B3DC62C339325B60706C068F0198BD8FA658396D06931B069155217690C7F88FD230CDB38

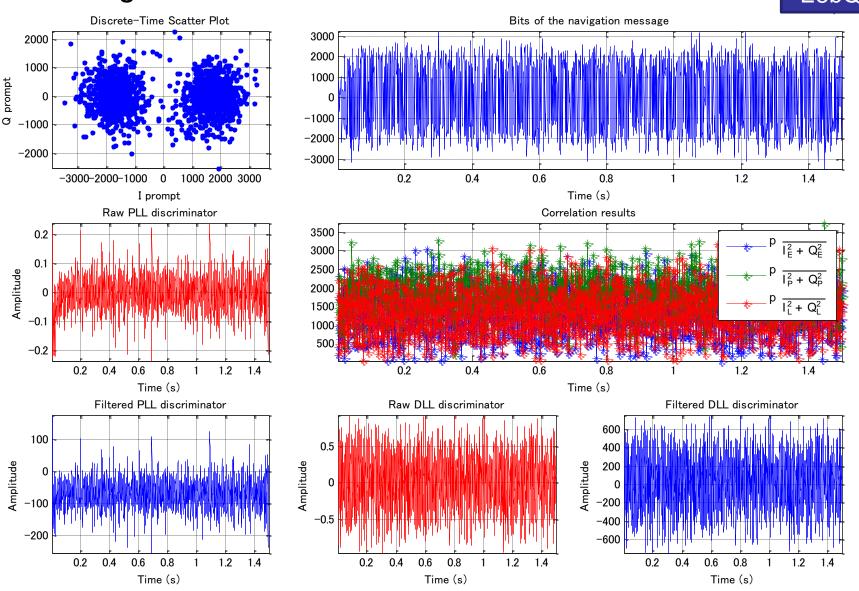
他の衛星と同様に生成

Figure 10. LFSR Based Code Generator for Truncated and Combined M-sequences


E5al/Q(GALILEO)の捕捉


E5al/Q(GALILEO)の追尾

E5bl/Q(GALILEO)の捕捉



E5bl/Q(GALILEO)の追尾

Trackingの結果

Galileoまとめ

- ■E1コードはBOC変調
- ■E5コードはGPS L5と同様の処理でOK
- ■ナビゲーションデータには誤り訂正符号(畳み込み符号)が使用されている
- ■ナビゲーションデータの複合にはViterbiデコー ダなどを利用する必要がある

BeiDou

BeiDou信号概要

	BeiDou
Service Name	B1
Center Freq.	1561.098 MHz
Signal Component	Data
I/Q	1
Band Width	2.046 MHz
Modulation	QPSK
Code Freq.	2.046 MHz
Code Chips	2046
Code Length	1ms
Nav. Data	D1/D2 NAV
Min. Received Power	-163.0 dBW

- ■昨年末ICDが公開された
- ■中心周波数がGPS L1CAと少し異なる

B1(BeiDou)の捕捉と追尾

- 現在15機(MEO×5+GEO×5+IGSO×5)
- IGSO, GEOが多いため日本からだと多くの衛星が 見える
- チップ数, チップレートがGPS L1CAの2倍
 - コード長はL1CAと同じ1ms
- コードにセカンダリコードとしてNH20がのっているため, 信号捕捉には注意が必要
- MEO・IGSO と GEOで異なるナビゲーションデータ (D1/D2 Nav)

B1コード生成

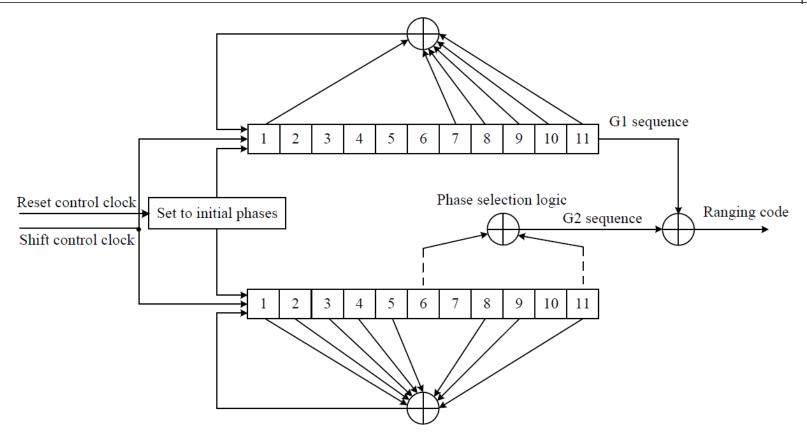


Figure 4-1 The generator of C_{B1I}

- Gold code
- GPS L1CAと作成方法は同じ
- PRN37まで割り振られている

D1/D2 Navのデコード

- BCHエンコード+インターリーブ
- MEO/IGSO衛星⇒D1 Nav GEO衛星⇒D2 Nav
 - D1 Nav, 50bps
 - D2 Nav, 500bps,

D1/D2 Navの航法メッセージ構造

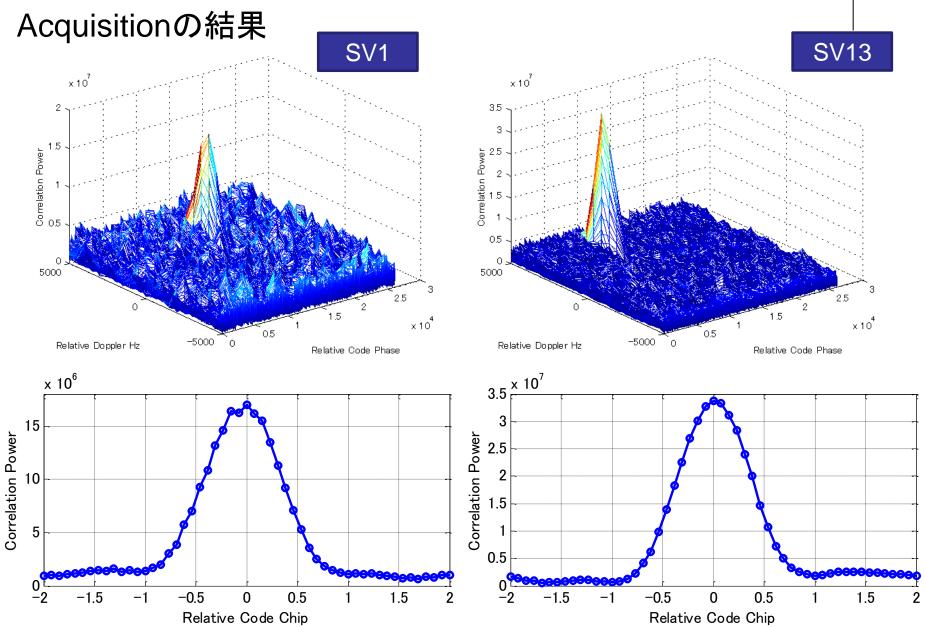
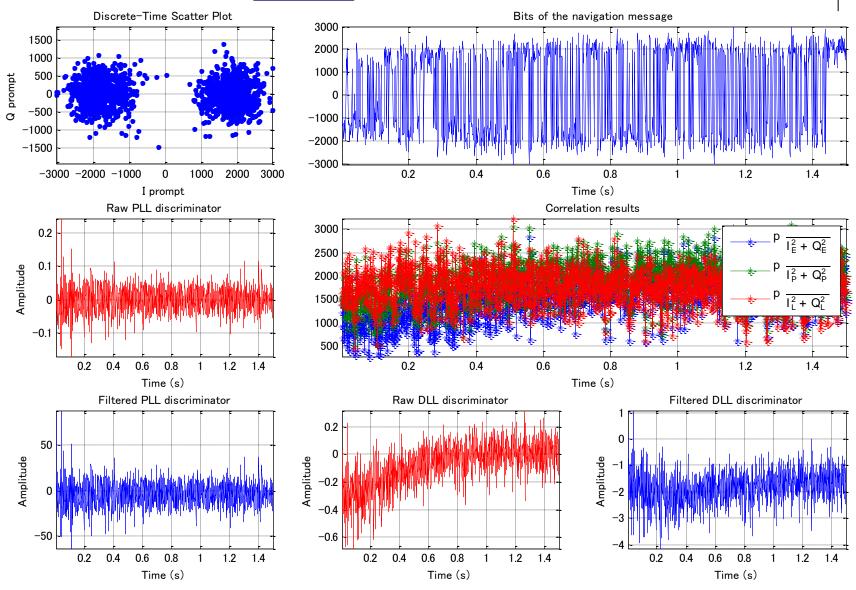


Fig 5-3 Processing of received down-link NAV message

■ ICDにBCHデコードのアルゴリズムが公開されている

B1(BeiDou)の捕捉



B1(BeiDou)の追尾

Trackingの結果

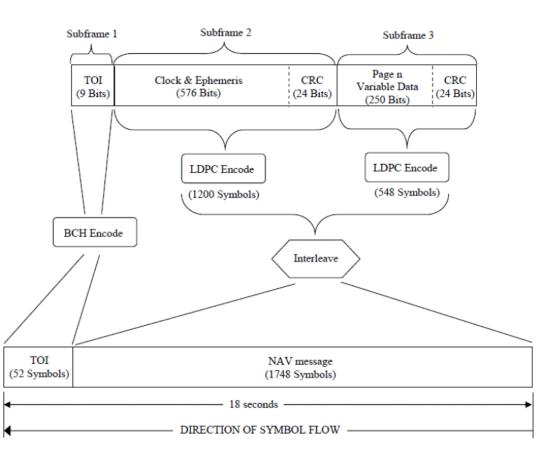
BeiDouまとめ

- 昨年末にICDが公開され、B1に関してナビゲーション データの詳細が公開された
- ■日本では多くの衛星が可視である
- B1はGPS L1CAと周波数が異なる
- セカンダリコード(NH20)に注意
- 基本的には2倍早いL1CAコード

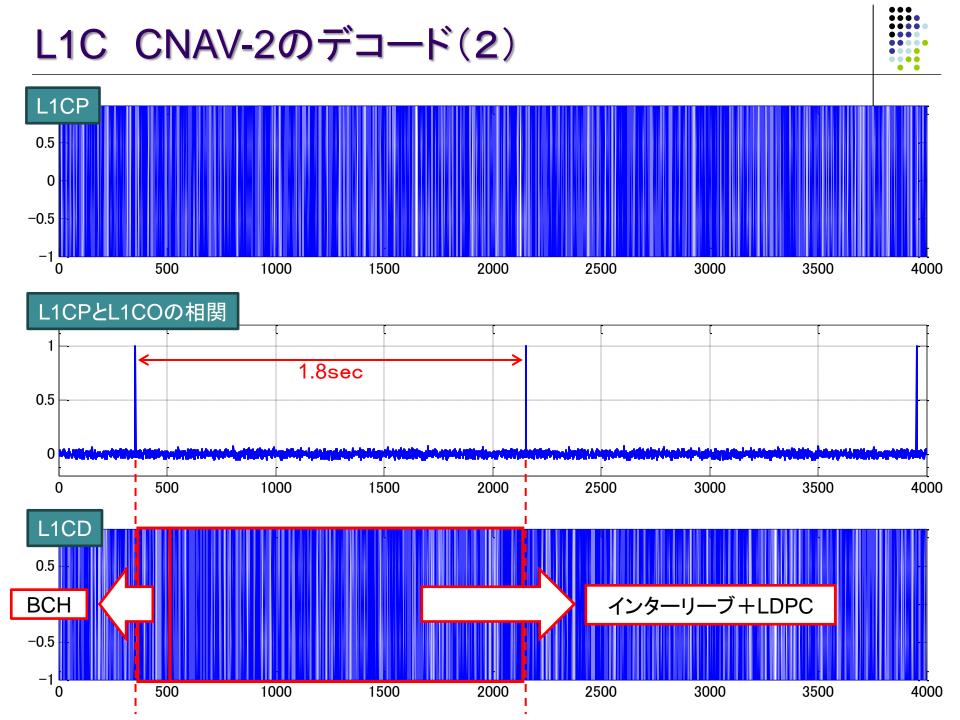
QZSS

QZSS信号概要

	QZSS						·		
Service Name	L1C		L2C		L5		LEX		
Center Freq.	1575.4	1575.42MHz		1227.60MHz		1176.45MHz		1278.75MHz	
Signal Component	L1CD Data	L1CP Pilot	L2CM Data	L2CL Pilot	L5I Data	L5Q Pilot	Short (Data)	Long (Pilot)	
I/Q	1	Q	i		I Q		1		
Band Width	4.096	6 MHz	2.046 MHz		20.46 MHz		42.0 MHz		
Modulation	BOC(1,1)		BPSK(1)		BPSK(10)		BPSK(5)		
Code Freq.	1.023	3 MHz	0.5115 MHz		10.23 MHz		0.5115 MHz		
Code Chips	102	230	10230 767250		10230		10230	104857 5	
Code Length	10ms	10ms (1.8s)	20ms	1.5s	1(10) ms	1(20) ms	4ms	410ms	
Nav. Data	CNAV-2	-	CNAV	-	CNAV	-	LEX	-	
Min. Received Power	-163.0 dBW	-158.25 dBW	-160.0 dBW		-157.9 dBW	-157.9 dBW	-155.7	dBW	


■ L1C, LEXなどの現在QZSSのみ放送している信号

L1C CNAV-2のデコード(1)


L1C, CNAV2の航法メッセージ構造

BCH+LDPC+インターリーブ+プリアンブル無し

CNAV2:18秒毎 = コード長の 1800倍 ⇒ 候補点1800点

- ① L1CP, L1CDをトラッキング
- ② 1800bitのL1COコードと,L1CP出力のビット列との相互相関をとる
- ③ L1CPのオーバレイコードの先 頭位置をL1CDに適用し、BCH デコーダによりサブフレーム1 をデコード
- ④ サブフレーム2,3分のビット列 をインターリーブした後に LDPCデコードにより復号

L2C, L5I CNAVのデコード

CNAVの航法メッセージ

1/2 fixed convolutional code

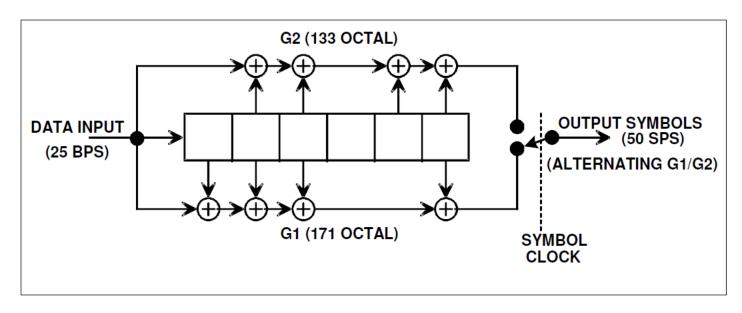
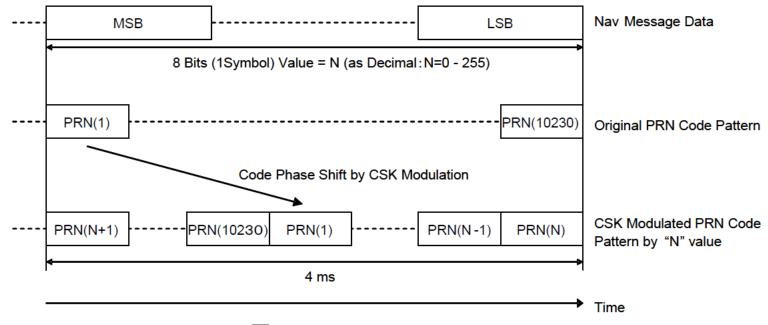
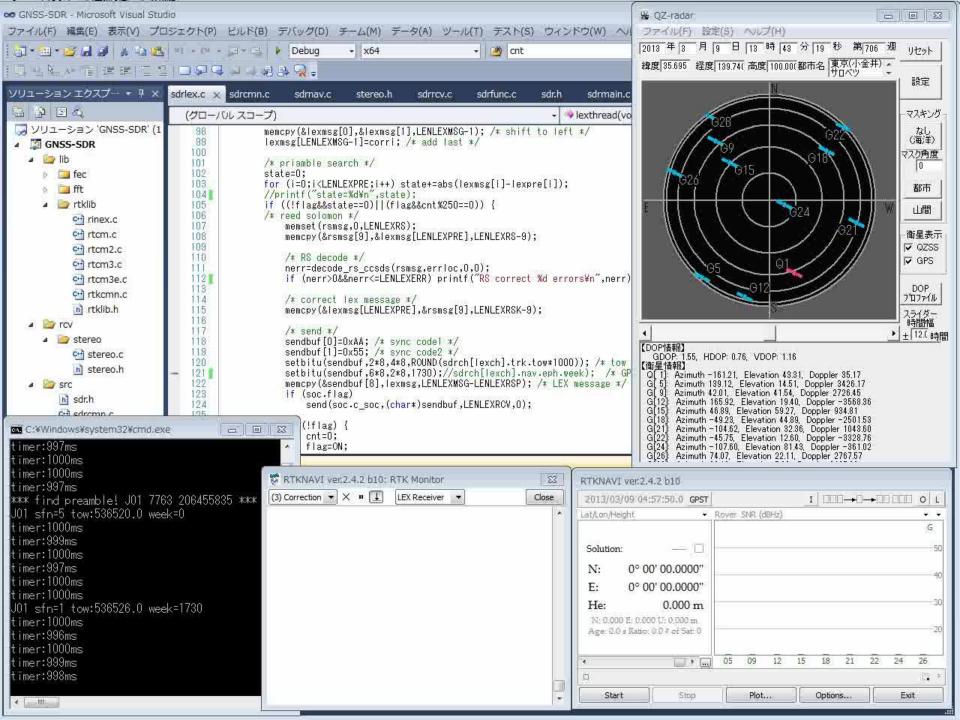


Fig. 3-14 IS-GPS-200F


デコード方法

- Viterbi Decoder
- Fano Convolutional FEC Decoder など...

LEXの捕捉と追尾



- 時分割多重, CSK変調
 - ShortコードとLongコードが交互に並んだコード. ShortコードがLEXメッセージでCSK変調されているため, L1CAでドップラ, コード先頭を推定し, FFTによりShortコードの位相 =LEXメッセージを求める.
 - (*) <u>Definition of Code shift Keying (CSK) Modulation</u>

LEXの捕捉 L1CA Normalized Power 8.0 0.6 0.4 3.64 3.645 3.65 3.655 3.66 3.665 3.67 3.675 3.68 3.685 3.69 IF Sample [sample] $\times 10^{7}$ **Short** 1.2 Shortロード位相 10230-Nbyte 0 3.64 3.645 3.65 3.655 3.66 3.665 3.67 3.675 3.68 3.685 3.69 IF Sample [sample] x 10'

■ L1CAとLEX Shortコードの位相差からLEXメッセージがデ コード可能なことを確認

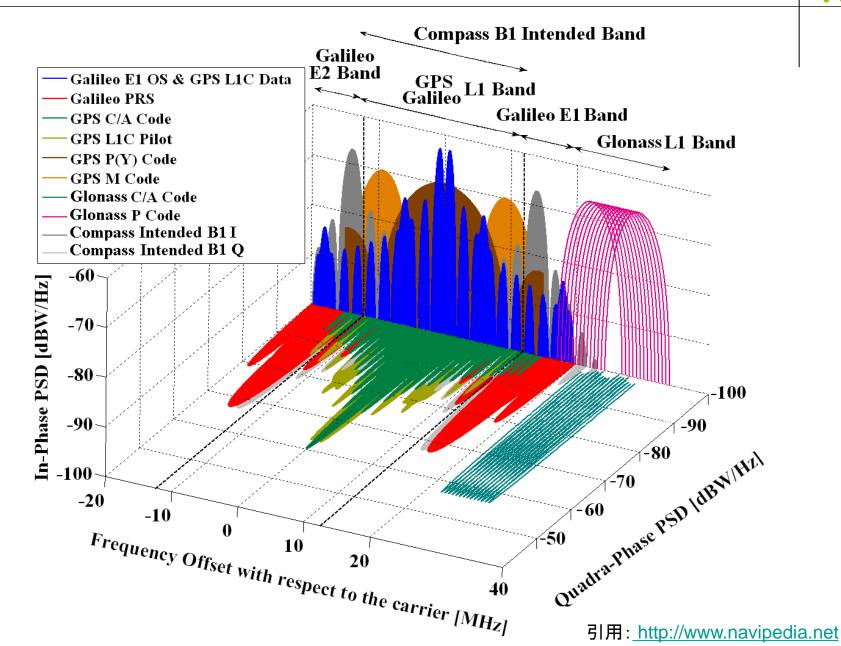
QZSSまとめ

- 新しい信号L1C, LEXを放送
- L1CのCNAV-2のデコードはかなり大変
 - CNAV-2をデコードする必要性?
- L2C, L5のCNAVのデコードはViterbiデコーダを 利用
- LEXはL1CA補助によりメッセージ復調可能
 - RTKLIBを用いてLEXリアルタイムPPPを実現

全体まとめ

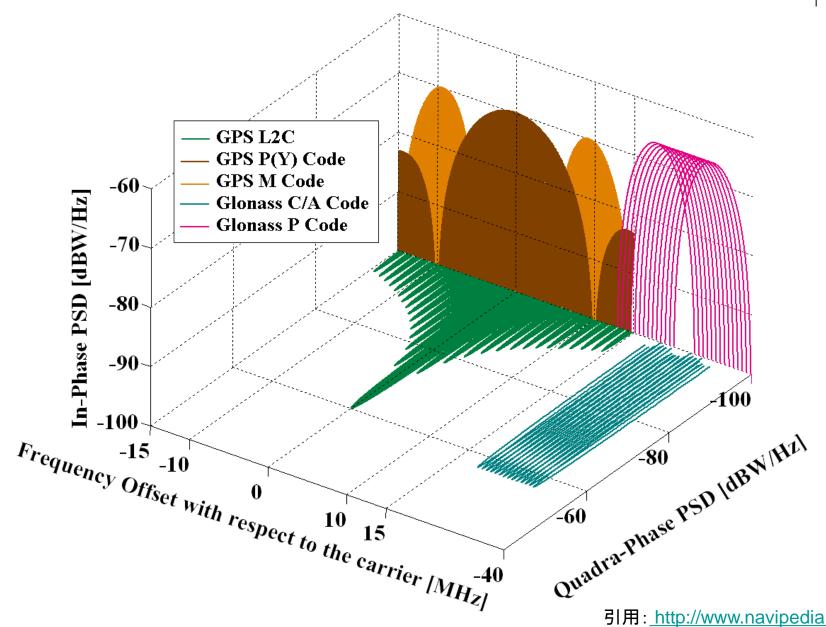
- 大学での研究目的のために、マルチバンド・マルチ GNSSソフトウエア受信機の開発を進めている
- ソフトウェア受信機は、新しい信号の評価や、トラッキングやマルチパスの解析などの研究用途に非常に有用
- GPSからマルチGNSSへの拡張はそんなに難しく ない
- しかし、ナビゲーションデータのデコードは少し大変

補足資料1 各衛星信号の詳細


L1周辺信号詳細

GNSS	GPS/QZSS	QZSS		GAL	ILEO	GLONASS	BeiDou
Service Name	C/A	L1C		E1		C/A (G1)	B1
Center Freq.	1575.42MHz	1575.42MHz		1575.4	12MHz	1602+ 0.5625K MHz	1561.098 MHz
Signal Component	Data	L1CD Data	L1CP Pilot	E1B Data	E1C Pilot	Data	Data
I/Q	Q	I	Q	I	Q	1	I
Band Width	2.046 MHz	4.096 MHz		24.55	2 MHz	1.002 MHz	2.046 MHz
Modulation	BPSK(1)	BOC(1,1)		CBOC(6	5,1,1/11)	BPSK	QPSK
Code Freq.	1.023 MHz	1.023	MHz	1.023	3 MHz	0.511 MHz	2.046 MHz
Code Chips	1023	102	230	40	92	511	2046
Code Length	1ms	10ms	10ms (1.8s)	4ms	4(100) ms	1ms	1ms
Nav. Data	NAV	CNAV-2	-	I/NAV	-	NAV	D1/D2 NAV
Min. Received Power	-158.5 dBW	-163.0 dBW	-158.25 dBW	-163.0 dBW	-158.25 dBW	-161.0 dBW	-163.0 dBW

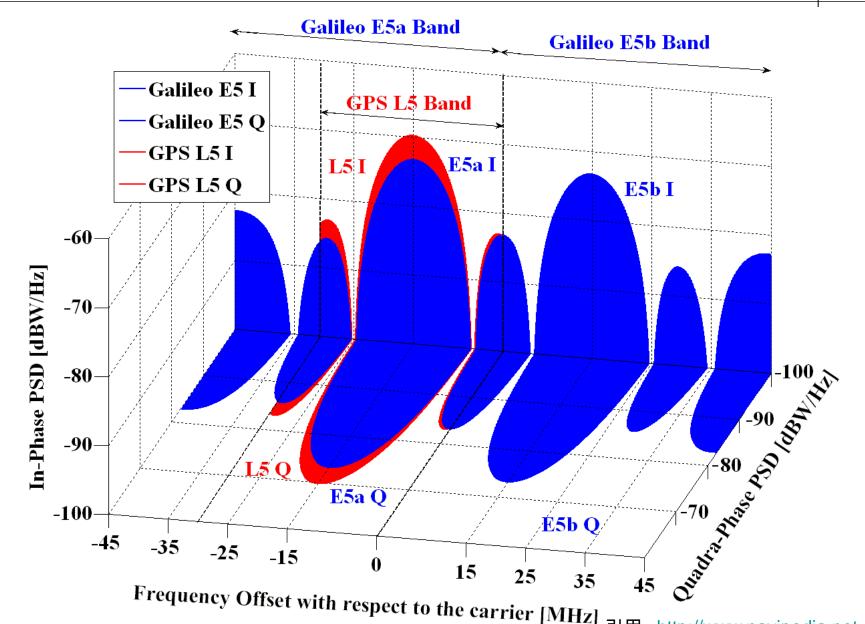
L1周辺PSD


L2周辺信号詳細

GNSS	GPS/QZSS		GLONASS
Service Name	L2C		C/A (G2)
Center Freq.	1227.60MHz		1246+ 0.4375K MHz
Signal Component	L2CM L2CL Data Pilot		Data
I/Q	I		I
Band Width	2.046 MHz		1.022 MHz
Modulation	BPS	SK	BPSK
Code Freq.	0.5115	MHz	0.511 MHz
Code Chips	10230	767250	511
Code Length	20ms 1.5s		1ms
Nav. Data	CNAV -		NAV
Min. Received Power	-160.0 dBW		-167.0 dBW

L2周辺PSD

引用: http://www.navipedia.net


L5周辺信号詳細

GNSS	GPS/QZSS		GALILEO		GALILEO	
Service Name	L5		E5a		E5b	
Center Freq.	1176.45MHz		1176.45MHz		1207.14MHz	
Signal Component	L5I Data	L5Q Pilot	E5al Data	E5aQ Pilot	E5bl Data	E5bQ Pilot
I/Q	1	Q	I	Q	1	Q
Band Width	20.46 MHz		20.46 MHz		20.46 MHz	
Modulation	BPSk	K(10)	BPSK(10)		BPSK(10)	
Code Freq.	10.23	MHz	10.23 MHz		10.23	3 MHz
Code Chips	102	30	102	230	10	230
Code Length	1(10) ms	1(20) ms	1(20) ms	1(100)m s	1(4) ms	1(100) ms
Nav. Data	CNAV	-	F/NAV	-	I/NAV	-
Min. Received Power	-157.9 dBW	-157.9 dBW	-155.0 dBW	-155.0 dBW	-155.0 dBW	-155.0 dBW

L5周辺PSD

Frequency Offset with respect to the carrier [MHz] 引用: http://www.navipedia.net

E6周辺信号詳細

GNSS	QZS	SS	
Service Name	LEX		
Center Freq.	1278.75MHz		
Signal Component	Short (Data)	Long (Pilot)	
I/Q	I		
Band Width	42.0 MHz		
Modulation	BPSK(5)		
Code Freq.	0.5115	MHz	
Code Chips	10230	1048575	
Code Length	4ms	410ms	
Nav. Data	LEX -		
Min. Received Power	-155.7	dBW	

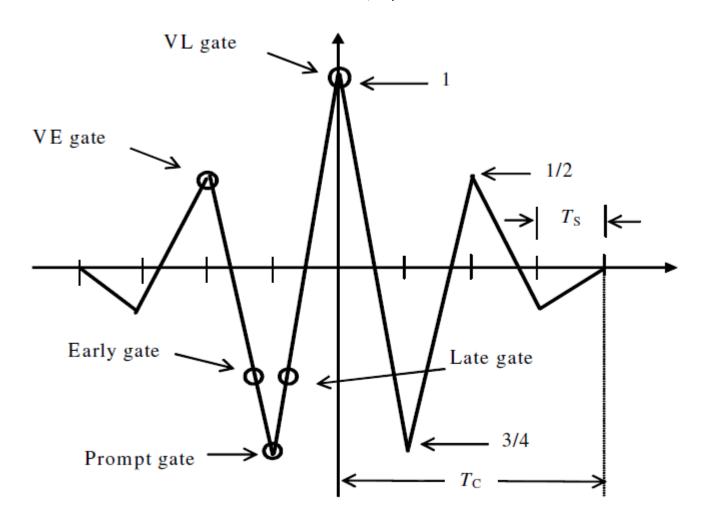
捕捉資料2 各ナビゲーションデータ の一覧

各ナビゲーションデータの詳細

Band	System	Signal	Nav. Type	Rate	Encode	Comment
		L1CA	NAV	50 bps, 300 bits 6 sec.	なし	
	GPS/QZS	L1C	CNAV-	100 bps, 1800 bits 18 sec.	BCH+LDPC+イ ンターリーブ	プリアンブル無し, セカンダリコード有り
L1	GALILEO	E1	I/NAV	125 bps, 250 bits 2 sec.	½畳込み +インターリーブ	セカンダリコード有り
	GLONASS	G1	NAV	50 bps, 100 bits 2 sec.	なし	
	BeiDou	B1	D1/D2 NAV	50 bps, 300 bits 6 sec.	BCH+インター リーブ	セカンダリコード有り
L2	GPS/QZS	L2C	CNAV	25 bps, 300 bits 12 sec.	25畳込み	
L2	GLONASS	G2	NAV	50 bps, 100 bits 2 sec.	なし	
	GPS/ QZS	L5	CNAV	50 bps, 300 bits 6 sec.	25畳込み	セカンダリコード有り
L5	GALILEO	E5a	F/NAV	25 bps, 250 bits 10 sec.	½畳込み +インターリーブ	セカンダリコード有り
	GALILEO	E5b	I/NAV	125 bps, 250 bits 2 sec.	½畳込み +インターリーブ	セカンダリコード有り

補足資料3 BOC信号トラッキング

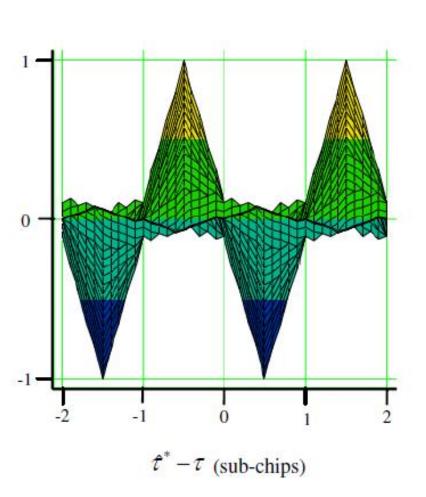
BOC信号トラッキング(1)

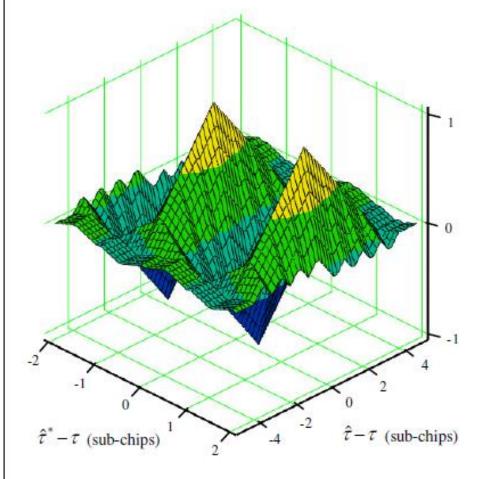

手法	論文	特徴	0	×
Single Sideband (SSB)	The Offset Carrier Modulation for GPS Modernisation, 1999	BOC信号のメインロー ブだけを通過させるフィ ルタを用いる手法. 様々 な拡張あり.	フィルタ後は通常 のDLLでOK.	フィルタ, ADCの追加などが必要.既存の受信機では難しい. 相関計算が増える.
Bump-Jumping (BJ)	Tracking algorithm for GPS offset carrier signal, 1999	VE,VLの2つの相関器を 追加することによりBOC のトラッキング状態を監 視.	実装が簡単. Sensibility Lossが 少ない.	複数回のジャンプが 必要な場合には収 束までに時間が掛 かる. ノイズ環境で 信頼性に課題.
Multiple-Gate Discriminators (MGD)	Unambiguous Tracker for GPS Binary-Offset Carrier Signals , 2003	複数の相関器を組み合わせたDiscriminatorにより相関カーブを調整.	Sensibility Lossが 少ない.	収束までに時間が 掛かる. 相関計算 が非常に増える.
Autocorrelation Side-Peak Cancellation Technique (ASPeCT)	ASPeCT: unambiguous sine-boc(n,n) acquisition/tracking technique for navigation applications, 2007	コードレプリカ, ローカル コードとの2回相関をとり その線形結合によりサ イドピークをキャンセル. 様々な拡張あり.	信頼性が高い.	相関計算が増える. ジッタが入る場合も.
Double Estimator (DE)	Double estimator—a new receiver principle for tracking BOC signals, 2008	サブキャリアをトラッキン グするSLLを追加するこ とにより、サイドピークを 削除した通常のDLLで 追尾.	マルチパス耐性が 良い. ノイズに強い. DLLへの変更が少 ない.	トラッキングループ が増える.

BOC信号トラッキング(2)

Bump-Jumping (BJ)

- ① VE, VLの相関器を追加
- ② VE, VLのカウンタによりトラッキング状態を監視し、サイドローブを追尾した場合にはメインローブへジャンプ

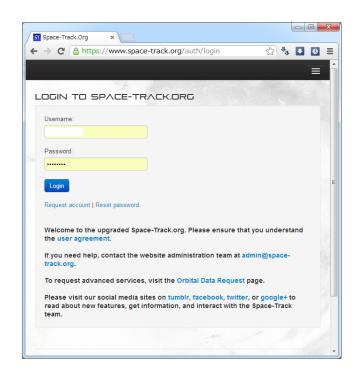



BOC信号トラッキング(3)

Double Estimator (DE)

- ① サブキャリアのトラッキングループ(SLL)を追加
- ② サブキャリアを追尾した後に、サブキャリアの ディレイを用いてコードをトラッキング

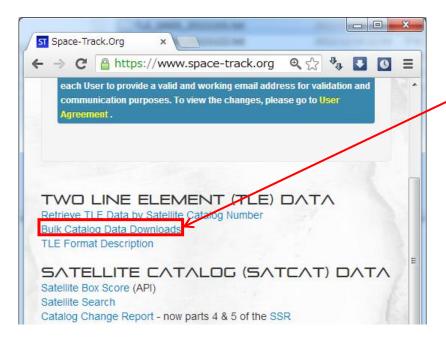
引用: Double estimator—a new receiver principle for tracking BOC signals



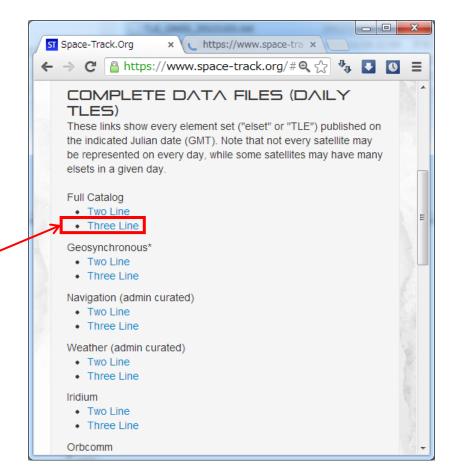
補足資料4 RTKPLOTによる 可視衛星予測

手順①

- RTKLIBをダウンロード(http://www.rtklib.com/)
 - 2.4.2 beta6 以上のバージョン
- 最新のTLE(Two Line Elements)を手に入れる
 - 2行軌道要素形式,アルマナックのようなもの
 - 有効期間数週間~数ヶ月?
 - 古いTLEはRTKLIB(rtklib\data\TLE_GNSS_20xxxxxx.txt)にも同梱

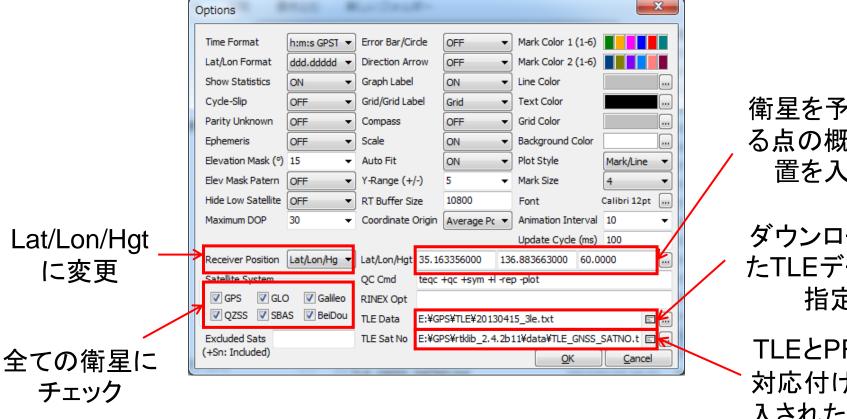


- Space Trackにアクセス (https://www.space-track.org)
- 初回はアカウントを作成する 必要が有る



■ 最新のTLEを手に入れる(続き)

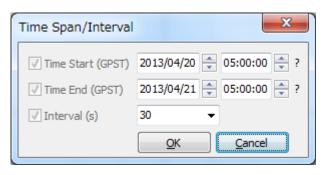
- Full Catalog->Three Lineをクリックしてtxtデータとして保存
- Three Line(衛星名が1行入っている)とTwo Lineを間違えないこと


■ ログイン後Bulk Catalog Data Downloadsをクリック

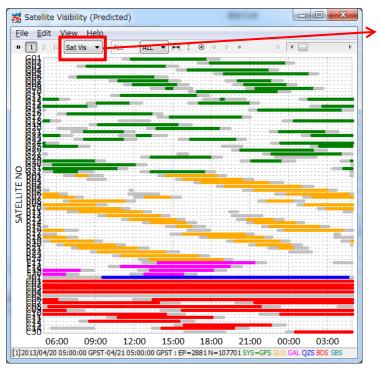
- RTKPLOTの設定
 - rtkplot.exeを起動, Edit->optionsを表示

衛星を予測す る点の概略位 置を入力

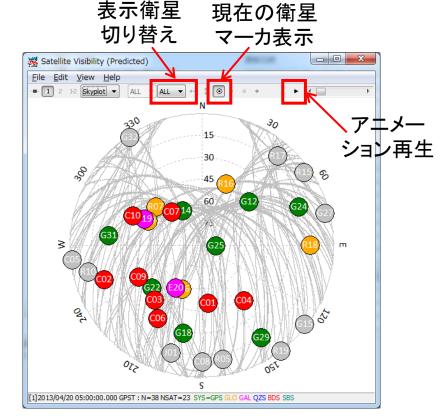
ダウンロードし たTLEデータを 指定


TLEとPRNの 対応付けが記 入されたファイ ルを指定

rtklib/data/TLE_GNSS_SATNO.txt



■ File->Visibility Analysisを選択



- 予測開始・終了時間を指定(日本時間ではなくGPSTに注意)
- 計算間隔を設定(sec)

■ OKで計算開始,自動描画

Skyplot に変更

補足資料5セミナー用ソースコード

機能と構成

マルチGNSSの信号捕捉のデモ

- sdrseminar.sln, VS2010でプロジェクト生成
- sdrcode.c, 測距コード生成用ソースコード
 - 全衛星全信号対応
- sdrfunc.c, 信号捕捉用の関数
- sdrplot.c, グラフ描画関数(gnuplot利用)
- sdrmain.c, メイン関数
- sdr.h, 各種設定

テスト用のIFデータ

- Rawディレクトリ
 - フロントエンド, NSL Stereo 100msのIFデータ

【L1帯信号(MAX2769)を利用】 I1.dat (1575.45 MHz) b1.dat (1561.098 MHz) g1.dat (1561 MHz) 2ビット|サンプリング サンプリング: 26MHz IF: 6.5Mhz

【L帯信号(MAX2112)を利用】

```
l2.dat (1227.6 MHz)
g2.dat (1246 MHz)
l5.dat (1176.45 MHz)
e5b.dat (1207.14 MHz)
3ビットIQサンプリング サンプリング: 26MHz IF: 0Mhz
```


補足資料6 参考HP·文献

参考HP

- http://taroz.net
 - 鈴木太郎, SDRの情報を公開中, ソースコードなども公開予定
- http://gpspp.sakura.ne.jp
 - 高須, 測位衛星による高精度測位技術の研究開発, RTKLIBの開発
- http://blog.goo.ne.jp/osqzss
 - 海老沼, OSQZSS, SDR, FPGA受信機の情報有り
- http://gnss-sdr.ru/
 - GLONASS-SDRの開発, GLONASSのトラッキングのソースコードサンプル有.
- https://github.com/gps-sdr
 - リアルタイムで動くC++で書かれた、GPS L1CAのプログラム。
- http://gnss-sdr.org/
 - リアルタイムで動くC++で書かれたSDR. GNU Radioを利用。
- http://igs.org/mgex/
 - マルチGNSSに関する様々な情報有り。
- http://www.navipedia.net
 - GNSS版のwikipedia.

参考文献

- ・ 平成23年 測位航法学会 全国大会 セミナーソースコード, 久保信明, 2011
- 平成24年 測位航法学会 全国大会 セミナー資料「GNSS受信機の概要」,荒井修, 2012
- Kai Borre, et. al, A Software-Defined GPS And Galileo Receiver: A Single-Frequency Approach, 2007
 - MATLABによるSDRソースコード
- Scott Gleason, et. al, GNSS applications and methods, 2009
 - C言語によるL1C, L2C, L5のコード作成サンプル有
- Elliott D. Kaplan, Christopher Hegarty, Understanding GPS: Principles And Applications, 2005
 - ループフィルタの設計の情報など
- Tsui , Fundamentals of Global Positioning System Receivers: A Software Approach, 2004
 - ソフトウェア受信機に関する概要,非常に参考になる